
144

- The overridden base method is not a sealed method.
- The override declaration and the overridden base method have

the same return type.
- The override declaration and the overridden base method have

the same declared accessibility. In other words, an override
declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method
using a base-access. In the example

 class A
 {
 int x=10;
 public virtual void Display()
 {
 MessageBox.Show("x= {0}",x);
 }

 }
 class B:A
 {
 int y=20;

 public override void Display()
 {
 base.Display();
 MessageBox.Show("y= {0}",y);
 }
 }

 private void ButCalculate_Click(object sender, EventArgs e)
 {

 A a = new A();
 B b = new B();
 b.Display();

 }

The base.Display() invocation in B invokes the Display method

declared in A. A base-access disables the virtual invocation mechanism
and simply treats the base method as a nonvirtual method. Had the
invocation in B been written ((A) this).Display(), it would recursively
invoke the Display method declared in B, not the one declared in A,
because Display is virtual and the runtime type of ((A) this) is B.

Only by including an override modifier can a method override
another method. In all other cases, a method with the same signature as
an inherited method simply hides the inherited method.

In the example
 class A
 {

145

 public virtual void Display() {
 MessageBox.Show("A.Display");
 }

 }
 class B:A
 {
 public virtual void Display() //Causes a warning.
 {
 MessageBox.Show("B.Display");
 }
 }

The Display method in B does not include an override modifier

and therefore does not override the Display method in A. Rather, the

Display method in B hides the method in A, and a warning is reported
because the declaration does not include a new modifier.

In the example

 class A
 {

 public virtual void Display()
 {
 MessageBox.Show("A.Display");
 }

 }
 class B:A
 {
 new private void Display()
 {
 MessageBox.Show("B.Display");
 }
 }
 class C:B
 {

 public override void Display()
 {
 MessageBox.Show("C.Display");
 }

}

 private void ButCalculate_Click(object sender, EventArgs e)
 {

 A a = new A();
 B b = new B();
 C c = new C();

